Stable and unstable operations in mod p cohomology theories

Sarah Whitehouse
Johns Hopkins, March 2007

Based on joint work in progress with Andrew Stacey.

§1. Stable and unstable operations

We will discuss operations between two multiplicative graded cohomology theories $E^*(-)$ and $F^*(-)$ which are commutative and complex orientable.

There are various kinds of operations:

- **Stable operations** $F^*(-) \to E^*(-)$ of degree l, given by $E^l(F) = [F, E]^l$.
- **Unstable operations** $F^k(-) \to E^{k+l}(-)$, given by $E^{k+l}(F^k)$.
- **Additive operations** $F^k(-) \to E^{k+l}(-)$, given by $P E^{k+l}(F^k)$.

The restriction map from stable to unstable operations factors via additive operations, so for each $k \in \mathbb{Z}$ we have maps

$$E^l(F) \to P E^{k+l}(F^k) \hookrightarrow E^{k+l}(F^k).$$
We can also consider the corresponding objects in the world of co-operations.

- **Stable co-operations**, given by $E_l(F)$, $l \in \mathbb{Z}$.

- **Unstable co-operations**, given by $E_{k+l}(F_k)$, $k, l \in \mathbb{Z}$.

- **Additive co-operations**, given by $QE_{k+l}(F_k)$, the indecomposables of $E_{k+l}(F_k)$.

The stabilization map $\sigma_{k*} : E_{k+l}(F_k) \to E_l(F)$, induced by $\sigma_k : \Sigma^\infty F_k \to F$, factors via the additive co-operations:

$$E_{k+l}(F_k) \to QE_{k+l}(F_k) \to E_l(F).$$
Throughout p will be an odd prime. We assume our theories satisfy the following conditions.

- E^* has characteristic p.
- The formal group law of $E^*(-)$ has finite height, say n.
- The coefficient of the first term in the p-series for $E^*(-)$ is invertible.
- The various $E^*(-)$-modules of operations from $F^*(-)$ to $E^*(-)$ are the duals over E^* to the corresponding E^*-modules of co-operations.

For example, we can take E to be Morava K-theory $K(n)$ and F to be any (multiplicative commutative complex orientable) theory.
Theorem

• (Bousfield, Kuhn) For each \(k, l \in \mathbb{Z}\), there’s a map \(\Delta^\infty : E^{k+l}(F_k) \to E^l(F)\), left-inverse to restriction.

• There is a positive integer \(h \leq 2\frac{p^n-1}{p-1} + 1\), such that an operation \(F^k(-) \to E^{k+l}(-)\) is a component of a stable operation if and only if it is the \(h\)-fold loop of an operation. Equivalently, a map \(F_k \to E_{k+l}\) is an infinite loop map if and only if it is an \(h\)-fold loop map.

• For \(\rho_k \in E^{k+l}(F_k)\), the components of \(\Delta^\infty(\rho_k)\) are given by:

\[
(\Delta^\infty(\rho_k))_m = (\nu_n^E)^{-i}(\Omega^j \rho_k)(\nu_n^F)^i,
\]

where \(i, j \geq 0\) are such that \(j \geq h\) and \(m - k = 2(p^n - 1)i - j\).
Let $x^E \in E^2(\mathbb{C}P^\infty)$ be the universal Chern class. Then $E^*(\mathbb{C}P^\infty) = E^*[x^E]$,
$E_*(\mathbb{C}P^\infty) = E_*\{\beta_1^E, \beta_2^E, \ldots\}$
where β_i^E is dual to $(x^E)^i$.

The p-series of E is
$[p]_E(x^E) = x^E +_E x^E +_E \cdots +_E x^E \in E^*[x^E]$.
Modulo p this has the form

$$[p]_E(x^E) \equiv \sum_{i \geq 1}^E v_i^E(x^E)p^i,$$

where $v_i^E \in E^{-2(p^i-1)}$. The hypotheses on E mean that

$$[p]_E(x^E) \equiv v_n^E(x^E)p^n + \text{higher terms},$$

where $v_n^E \in E^{-2(p^n-1)}$ is invertible.

The universal Chern class x^F represents a map $x^F : \mathbb{C}P^\infty \rightarrow F_2$. Consider the induced map $x_*^F : E_*(\mathbb{C}P^\infty) \rightarrow E_*(F_2)$ and write

$$b_i = x_*^F(\beta_i^E) \in E_*(F_2),$$

$$b(s) = \sum_{i \geq 0} b_is^i \in E_*(F_2)[s].$$
Notation For $n \in \mathbb{N}$, let $\pi_n = \frac{p^n - 1}{p - 1}$.

Proposition

In $Q E_\ast(F_\ast)$, we have

$$v_n^E b_1^{\pi_n} = b_1^{\pi_{n+1} - 1} [v_n^F].$$

Sketch proof

- Start from the Ravenel-Wilson relation in $E_\ast(F_\ast)[s]$:

 $$b([p]_E(s)) = [p]_F(b(s)).$$

- Quotient to the additive world of $Q E_\ast(F_\ast)[s]$.

- Reduce mod p.

- Equate powers of s and read off identities.

- In the case $n = 1$, looking at leading terms leads directly to the required identity.

- Use this as the start of a recursive procedure to prove the general case.
The **algebraic suspension element** is
\[e = \eta_1 \ast u_1 \in E_1(\underline{F}_1), \]
where \(u_1 \) is the image in \(E_1(S^1) \) of the unit in \(E_0(S^0) \) under the suspension isomorphism \(E_0(S^0) \cong E_1(S^1) \) and \(\eta_1 : S^1 \to \underline{F}_1 \) is the unit map.

The suspension map \(E_{l-1}(\underline{F}_{k-1}) \to E_l(\underline{F}_k) \) induced by \(\Sigma \underline{F}_{k-1} \to \underline{F}_k \) is, up to sign, \(\circ \)-multiplication by \(e \).

Since we have \(b_1 = -e \circ 2 \in E_2(\underline{F}_2) \), we can rewrite the proposition in terms of \(e \) rather than \(b_1 \):
\[
\nu_n^E e^{2\pi n} = e^{2(\pi n+1-1)}[\nu_n^F] = e^{2(p^n-1)+2\pi n}[\nu_n^F].
\]
Definition

The *E*-additive loop height of F is the least positive integer h such that the identity

$$v_n^E e^h = e^{2(p^n-1)+h} [v_n^F].$$

holds in $QE_* (F_*)$.

It follows from the proposition that

$$1 \leq h \leq 2\pi_n.$$

Examples

- From the Ravenel-Wilson calculation of $K(n)_*(BP_*)$, the $K(n)$-additive loop height of BP is $2\pi_n$.

- From Wilson’s calculation of $K(n)_*(K(n)_*)$, the self additive loop height of $K(n)$ is 1.
Definition

The *E-unstable loop height of F* is the least positive integer \(h \) such that the identity

\[
v_n^E e^{\circ h} = e^{\circ 2(p^n-1)+h} \circ [v_n^F]
\]

holds in \(E_*(F_*) \).

Since \(\circ \)-multiplication by \(e \) factors via the additive co-operations, the *E-unstable loop height of F* is at least the *E-additive loop height* and at most one more. In particular, \(2\pi_n + 1 \) is an upper bound.

Example

The self unstable loop height of \(K(n) \) is 1.
Definition

\[s = (v_n^E)^{-1} e^{o2(p^n-1)} \circ [v_n^F] \in E_0(F_0). \]

Proposition: splitting co-operations

Let \(h \) be the \(E \)-unstable loop height of \(F \). Then

- \(s \circ s = s \),
- \(e^{oh} \circ s = e^{oh} = s \circ e^{oh} \),
- There is some \(s' \) such that \(e^{oh} \circ s' = s \).
- There is a split short exact sequence of graded algebras

\[0 \to sE_*(F_*) \to E_*(F_*) \to E_*(F_*)/sE_*(F_*) \to 0. \]

- \(\Sigma^h \) is an isomorphism on \(sE_*(F_*) \) and zero on \((1-s)E_*(F_*) \).
Proposition cont.

- Passing to colimits via suspension maps gives, for \(k, l \in \mathbb{Z} \), \(E_l(F) \cong sE_{k+l}(\underline{F}_k) \), so we have a “destabilization map” \(E_l(F) \to E_{k+l}(\underline{F}_k) \), right inverse to stabilization. The image of this is the same as the image of the \(h \)-fold suspension \(\Sigma^h : E_{k+l-h}(\underline{F}_k) \to E_{k+l}(\underline{F}_k) \).

Since we have assumed that we have good duality, dualizing all of the above gives the theorem.

In particular a map \(K(n)_k \to K(n)_l \) is an infinite loop map if and only if it is a loop map.
§2. Plethories

Slogan For suitable cohomology theories E,

$E^*(E_*)$ is a bigraded completed plethory and $E^*(X)$ is a graded completed algebra over this plethory.

This can be viewed as a monoidal reinterpretation of the following comonadic description of [BJW].
Theorem [BJW]

$E^*(E_*)$ represents a comonad in FAlg and $E^*(X)$ is a comodule in FAlg for this comonad.

Here FAlg is the category of complete Hausdorff commutative filtered E^*-algebras.

This means:

- The hom functor $\text{FAlg} \to \text{GSet}$

 $$A^* \mapsto \text{FAlg}(E^*(E_*), A^*)$$

 has a natural lift to a functor $U : \text{FAlg} \to \text{FAlg}$.

- There are natural transformations $\mu : U \to U^2$, $\varepsilon : U \to I$ satisfying coassociativity and counit conditions.

- There is a coaction map $\rho : E^*(X) \to U(E^*(X))$ satisfying the standard conditions.
Notation Let k be a commutative associative unital ground ring and let \mathcal{A} be the category of associative commutative unital k-algebras ("k-algebras" from now on). Write \otimes for \otimes_k.

Definition A $(k-\mathcal{A})$-biring B is a k-algebra object in \mathcal{A}^{op}.

So, B is a k-algebra together with k-algebra maps:

$\Delta^+: B \to B \otimes B$ \hspace{1em} \text{coaddition}

$\varepsilon^+: B \to k$ \hspace{1em} \text{cozero}

$\nu: B \to B$ \hspace{1em} \text{additive inverse}

$\Delta^\times: B \to B \otimes B$ \hspace{1em} \text{comultiplication}

$\varepsilon^\times: B \to k$ \hspace{1em} \text{counit}

and a ring map $\beta: k \to \text{hom}_\mathcal{A}(B, k)$, $(k$-colinear structure), satisfying axioms...

Notation

$$\Delta^+(b) = \sum b^{(1)} \otimes b^{(2)},$$

$$\Delta^\times(b) = \sum b^{[1]} \otimes b^{[2]}.$$
Key Property

For a biring B, $\text{hom}_A(B, A)$ is again a k-algebra.

I.e. the functor $B_* = \text{hom}_A(B, -) : A \to \text{Sets}$ lifts to A.

Here

$$(f + g)(b) = \sum f(b^{(1)})g(b^{(2)}),$$

$$(fg)(b) = \sum f(b^{[1]})g(b^{[2]}).$$

Indeed

$$\text{Birings} \simeq \text{CovRep}(A, A).$$

Examples

- $k[e]$: this represents the identity functor $A \to A$. The element e is “ring-like”:

 $$\Delta^+(e) = 1 \otimes e + e \otimes 1,$$
 $$\Delta^x(e) = e \otimes e.$$

- More generally, the free algebra $S(X)$ on a set X with each $x \in X$ ring-like.

- Functions($\mathbb{F}_p, \mathbb{F}_p$).
The monoidal structure on birings: the composition product

For a biring B and a k-algebra A, there is a k-algebra $B \circ A$ such that

$$\text{hom}_A(A, \text{hom}_A(B, C)) \cong \text{hom}_A(B \circ A, C),$$

i.e.

$$(B \circ A)_* = A_*B_*.$$

If A is itself a biring then so is $B \circ A$, with structure maps $1 \circ \Delta^+, 1 \circ \Delta^\times$, etc, and the above bijection is then an isomorphism of algebras.

\circ is a monoidal structure on the category \mathcal{B} of $(k - k)$-birings with unit $k[e]$. It is associative, but not symmetric or bilinear (though it is linear in B), and it distributes over \otimes.
\(B \circ A \) is the free \(k \)-algebra on symbols \(b \circ a \) subject to relations:

\[
\begin{align*}
(b_1 + b_2) \circ a &= b_1 \circ a + b_2 \circ a \\
b_1 b_2 \circ a &= (b_1 \circ a)(b_2 \circ a) \\
1 \circ a &= 1 \\
b \circ (a_1 + a_2) &= \sum (b^{(1)} \circ a_1)(b^{(2)} \circ a_2) \\
b \circ (a_1 a_2) &= \sum (b^{[1]} \circ a_1)(b^{[2]} \circ a_2) \\
b \circ (-a) &= v(b) \circ a \\
b \circ 1 &= \varepsilon^-(b) \\
b \circ 0 &= \varepsilon^+(b)
\end{align*}
\]
Definition [T-W, B-W]

A *k*-plethory P is a monoid in (\mathcal{B}, \odot), i.e. P is a biring with maps of birings $\odot : P \odot P \to P$ and $k[e] \to P$ satisfying associativity and unitality.

A plethory is also known as a *Tall-Wraith monoid*.

Let P be a k-plethory. A *P-algebra* A is a k-algebra with an action of P, that is a map of k-algebras $P \odot A \to A$ such that the usual diagrams commute.

A k-plethory structure on a biring P is the same as a monad structure on the functor $P \odot -$, and by adjunction, also the same as a comonad structure on the functor $\text{hom}_A(P, -)$. An action of P on A is the same as a comodule over the comonad.
From the construction of \odot, in a plethory P we have formulas like

$$p \odot (qr) = \sum (p^{[1]} \odot q)(p^{[2]} \odot r).$$

That \odot is a map of birings encodes other quite complicated formulas, for example for rewriting $\Delta^+(p \odot q)$ and $\Delta^\times(p \odot q)$.

Examples

- $k[e]$ and $\text{Functions}(\mathbb{F}_p, \mathbb{F}_p)$ are plethories, with biring structure as before, together with composition.

- Let M be a monoid. The free algebra on the underlying set of M is a plethory with $m \in M$ ring-like and composition from the monoid product $m_1 \odot m_2 \to m_1 m_2$.

- $\Lambda = \mathbb{Z}[\lambda_1, \lambda_2, \ldots]$, the ring of symmetric functions in infinitely many variables, where the λ_i are the elementary symmetric functions. This is a plethory where \odot is plethysm of symmetric functions. A ring R is a Λ-algebra if and only if it is a λ-ring.
All this can be generalised to the category \mathcal{V} of \mathcal{V}-algebras, where \mathcal{V} is a variety of algebras (in the sense of universal algebra, specified by operations and identities).

For example, $\mathcal{V} = $ abelian groups or k-modules or k-algebras or ...

Definition

A co-\mathcal{V}-object in \mathcal{V} is a \mathcal{V}-algebra object in \mathcal{V}^{op}. Write \mathcal{VV}^c for the category of co-\mathcal{V}-objects in \mathcal{V}.

Theorem

- The free functor $F_\mathcal{V} : \text{Set} \to \mathcal{V}$ lifts to \mathcal{VV}^c.
- There is a pairing $\odot : \mathcal{VV}^c \times \mathcal{V} \to \mathcal{V}$.
- \mathcal{VV}^c has a monoidal structure \odot, with unit $F_\mathcal{V}(\{*\})$, the free \mathcal{V}-algebra on a one point set.
- For a monoid M in Set, $F_\mathcal{V}(|M|)$ is a monoid in \mathcal{VV}^c.
Examples

<table>
<thead>
<tr>
<th>V</th>
<th>V V c</th>
<th>⊙</th>
<th>⊙-monoid P</th>
<th>P-algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab gp</td>
<td>ab gp</td>
<td>⊗ Z</td>
<td>ring R</td>
<td>R-module</td>
</tr>
<tr>
<td>k-mod</td>
<td>k-mod</td>
<td>⊗ k</td>
<td>k-algebra A</td>
<td>A-module</td>
</tr>
<tr>
<td>A</td>
<td>birings</td>
<td>⊖</td>
<td>plethory P</td>
<td>P-algebra</td>
</tr>
</tbody>
</table>

Example

\[E = K(1) \] for \(p \) an odd prime

\[E^0(E_0) \] is a completed version of the free plethory on the submonoid of \(\mathbb{N}_0 \) under multiplication generated by 0 and \(\tilde{q} \), where the generators correspond to \(\Psi^0 \) and \(\Psi^{\tilde{q}} \).