
MAS334 COMBINATORICS 2017/2018

Solutions to Example Sheet 1 : The binomial coefficients

1. Recall the Binomial Theorem (Theorem 6):(
n

0

)
+

(
n

1

)
x +

(
n

2

)
x2 + . . . +

(
n

n

)
xn = (1 + x)n.

The first two results required are obtained by simply substituting x = 1 and then x = −1
into this.

Then adding those first two results gives the sum of the even terms as 2n−1, (since twice the
sum of the even terms is 2n).

Similarly subtracting the two results gives the sum of the odd terms as 2n−1 too.

2. The answer is 2n. You could count the subsets of various sizes: there are
(
n
k

)
subsets of k

elements. Then adding all these up for the various k would give (by question 1) 2n. However
it is much quicker to see that a subset is determined by deciding for each of 1, 2, 3, . . . , n
whether it is IN the subset or OUT of the subset; i.e. a two-way choice n times, giving 2n

options overall.

3. A rectangle is determined by its sides. These are obtained by choosing any two of the n + 1

horizontal lines and any two of the n+ 1 vertical lines. So the number of rectangles is
(
n+1
2

)2
.

[You are not necessarily expected to spot this two line solution straight away. If not, you
should begin by considering small examples. Work out what the answer is in the n× n case,
where n = 1, 2, 3, 4, 5, by directly counting. Make sure you do this carefully and accurately,
as mistakes here will lead to you failing to spot a pattern. You should get the answers
1, 9, 36, 100, 225. Now look for a pattern. The first thing you notice is that these numbers are
all squares: 12, 32, 62, 102, 152. Now you need to see a pattern in the numbers 1, 3, 6, 10, 15.
These you should spot in Pascal’s triangle, as

(
n+1
2

)
for n = 1, 2, 3, 4, 5. So at this point you

guess that the general answer is
(
n+1
2

)2
. You still need to find an argument to justify this

guess in the general case. But now you know that you need to look in the problem for a
choice of two things from n + 1 things, twice over. Now you should be able to find the two
line argument above.]

4. (a) Any two lines from the n give rise to a different intersection point, so there are
(
n
2

)
points

altogether.
(b) The xi parallel lines will give no intersection points, resulting in these

(
xi

2

)
points ‘being

lost’. So now the number of intersection points is(
n

2

)
−
(
x1

2

)
− . . .−

(
xk

2

)
=

1

2
(n2 − n− x2

1 + x1 − . . .− x2
k + xk) =

1

2
(n2 − x2

1 − . . .− x2
k)

(the last equality being due to the fact that n = x1 + . . . + xk).
(c) We need to find some x1, x2, . . . , xk whose sum is 14 and whose squares sum to 74 (since
1
2
(142 − x2

1 − x2
2 + . . .− x2

k) = 61). Hence the possible values of the xi’s are

8, 2, 2, 1, 1 or 7, 4, 3 or 6, 6, 1, 1;

the last two cases are illustrated:
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5. On the one hand, we may choose k items from n in
(
n
k

)
ways.

Then, for each of the k items, we may choose to colour the item red or blue, giving 2k

possibilities.

So there are 2k
(
n
k

)
possibilities in total.

On the other hand, the number of ways to choose i items to colour red is
(
n
i

)
and the number

of ways to choose the remaining k − i items (to be coloured blue) is
(
n−i
k−i

)
.

Therefore the total number of possibilities is
∑k

i=0

(
n
i

)(
n−i
k−i

)
.

Since these are two ways of counting the same thing, we have the required equality

k∑
i=0

(
n

i

)(
n− i

k − i

)
= 2k

(
n

k

)
.

6. i)

a) There are
(
2n
n

)
ways to choose n people from 2n.

On the other hand, this may be done by choosing n women from n and 0 men, or n− 1
women and 1 man, or n− 2 women and 2 men, and so on.

The number of ways to do this is(
n

n

)(
n

0

)
+

(
n

n− 1

)(
n

1

)
+

(
n

n− 2

)(
n

2

)
+ · · · +

(
n

0

)(
n

n

)
.

Using
(
n
i

)
=
(

n
n−i

)
, this gives(

n

0

)2

+

(
n

1

)2

+

(
n

2

)2

+ · · · +

(
n

n

)2

=

(
2n

n

)
.

b)
(
2n
n

)
is the coefficient of xn in the expansion of (1 + x)2n.

(1 + x)2n = ((1 + x)n)2

=

(
n∑

k=0

(
n

k

)
xk

)2

.

So the coefficient of xn is
∑n

i=0

(
n
i

)(
n

n−i

)
.

Using
(
n
i

)
=
(

n
n−i

)
, this gives

∑n
i=0

(
n
i

)2
=
(
2n
n

)
.

c) The number of shortest possible routes from bottom left point A to top right point B in
a square n× n grid is

(
2n
n

)
.

Each such route passes through precisely one of the n + 1 points, labelled 0, 1, 2, . . . , n
say, on the diagonal of the grid from top left to bottom right.
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The no. of routes through point i

= (no. of routes from A to i) · (no. of routes from i to B) .

Routes from A to i consist of n− i units up and i units right and so the number of these
is
(
n
i

)
.

Similarly, to get from i to B requires going i units up and n − i units right, so again
there are

(
n
i

)
such routes.

So the total number of routes is
∑n

i=0

(
n
i

)2
.

ii) We may choose i women and i men, for 0 ≤ i ≤ n.

There are
(
n
i

)(
n
i

)
ways to choose i women and i men.

So the total is
∑n

i=0

(
n
i

)2
.

By the previous parts, this is
(
2n
n

)
.

iii) There must be at least one person in the subset to act as leader. For 1 ≤ i ≤ n, there
are

(
n
i

)
ways to choose an i person subset and then i possibilities for leader of the subset.

So the total is
∑n

i=1 i
(
n
i

)
.

On the other hand, we may first pick a leader, in n ways, and then pick any subset of
the remaining n− 1 people for them to lead, in 2n−1 ways.

[Alternative answer for iii):

n∑
i=1

i

(
n

i

)
=

n∑
i=1

i
n!

i!(n− i)!

=
n∑

i=1

n!

(i− 1)!(n− i)!

= n
n∑

i=1

(n− 1)!

(i− 1)!((n− 1) − (i− 1))!

= n

n−1∑
j=0

(n− 1)!

j!(n− 1 − j)!

= n(1 + 1)n−1 = n2n−1. ]
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